Discovering opinion leaders for medical topics using news articles
نویسندگان
چکیده
BACKGROUND Rapid identification of subject experts for medical topics helps in improving the implementation of discoveries by speeding the time to market drugs and aiding in clinical trial recruitment, etc. Identifying such people who influence opinion through social network analysis is gaining prominence. In this work, we explore how to combine named entity recognition from unstructured news articles with social network analysis to discover opinion leaders for a given medical topic. METHODS We employed a Conditional Random Field algorithm to extract three categories of entities from health-related new articles: Person, Organization and Location. We used the latter two to disambiguate polysemy and synonymy for the person names, used simple rules to identify the subject experts, and then applied social network analysis techniques to discover the opinion leaders among them based on their media presence. A network was created by linking each pair of subject experts who are mentioned together in an article. The social network analysis metrics (including centrality metrics such as Betweenness, Closeness, Degree and Eigenvector) are used for ranking the subject experts based on their power in information flow. RESULTS We extracted 734,204 person mentions from 147,528 news articles related to obesity from January 1, 2007 through July 22, 2010. Of these, 147,879 mentions have been marked as subject experts. The F-score of extracting person names is 88.5%. More than 80% of the subject experts who rank among top 20 in at least one of the metrics could be considered as opinion leaders in obesity. CONCLUSION The analysis of the network of subject experts with media presence revealed that an opinion leader might have fewer mentions in the news articles, but a high network centrality measure and vice-versa. Betweenness, Closeness and Degree centrality measures were shown to supplement frequency counts in the task of finding subject experts. Further, opinion leaders missed in scientific publication network analysis could be retrieved from news articles.
منابع مشابه
Detection of Characteristic Co-Occurrence Words from News Articles on the Web
A large number of news articles are published on the Web every day, and demand of discovering news articles on new/important topics has been growing. In this paper, we present a method for detecting characteristic words co-occurring with a target word (characteristic co-occurrence words) to help users find important topics related to the target word. The method divides news articles published i...
متن کاملA Temporal Frequent Itemset-Based Clustering Approach For Discovering Event Episodes From News Sequence
When performing environmental scanning, organizations typically deal with a numerous of events and topics about their core business, relevant technique standards, competitors, and market, where each event or topic to monitor or track generally is associated with many news documents. To reduce information overload and information fatigues when monitoring or tracking such events, it is essential ...
متن کاملIdentifying Disputed Topics in the News
News articles often reflect an opinion or point of view, with certain topics evoking more diverse opinions than others. For analyzing and better understanding public discourses, identifying such contested topics constitutes an interesting research question. In this paper, we describe an approach that combines NLP techniques and background knowledge from DBpedia for finding disputed topics in ne...
متن کاملAn annotated corpus of quoted opinions in news articles
Quotes are used in news articles as evidence of a person’s opinion, and thus are a useful target for opinion mining. However, labelling each quote with a polarity score directed at a textually-anchored target can ignore the broader issue that the speaker is commenting on. We address this by instead labelling quotes as supporting or opposing a clear expression of a point of view on a topic, call...
متن کاملControversial Topic Discovery on Members of Congress with Twitter
This paper addresses how Twitter can be used for identifying conflict between communities of users. We aggregate documents by topic and by community and perform sentiment analysis, which allows us to analyze the overall opinion of each community about each topic. We rank the topics with opposing views (negative for one community and positive for the other). For illustration of the proposed meth...
متن کامل